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The DSF-UniNA research unit has performed activities concerning the moment tensor estimation, the ground motion simulation, the kinematic source The second code uses an hybrid approach, with the low frequency seismograms computed by a discrete wave number method and enriched by stochastic

inversion, and the determination of ground motion predictive equations. high frequency modeling. Finally, a high-order spectral element method code 1s used for the full 3D numerical modeling of the wavefield.
The moment tensor solution is determined by modelling the strong-motion waveforms using two different approaches. The former one uses the point The kinematic inversion is aimed at determining the rupture direction, the final slip distribution on the fault plane and the propagation velocity of the rup-
ture. The methodology is based on representation integral, in the form proposed by Burridge and Knopoff (1964). It is solved by a finite elements techni-
que that uses a Delaunay’s fault plane triangulation. The slip is parameterized through a 2D Gaussian overlapping functions, and the inverse problem is
solved using the Neighbourhood algorithm with a L2 norm.

Finally, we estimated a GMPE for low-magnitude earthquakes (M< 4.0) in the Campania-Lucania region in southern Apennines (Italy. The model con-
cerned peak ground acceleration (PGA) and velocity (PGV) and has been retrieved on a data-set of about 160 earthquakes recorded by the Irpinia Sei-

smic Network (ISNet) (Iannaccone et al., 2009) in the last four years.

source approximation and performs a grid search over a set of trial source positions and time shifts in order to identify the optimal centroid position, time
and moment tensor through a minimization of the residual errors. In the second method the rupture is represented by a finite 1D source model. Source
finiteness i1s approximated by a summation over point sources aligned along fault strike. The focal mechanism and the linear seismic moment distribution
along the strike of the fault are inverted at the same time using a fast and optimized grid search combined with a simulated annealing algorithm.
Concerning the seismic wavefield simulation, it is numerically modeled using three different algorithms. The first, based on the asymptotic ray-theory
approximation, rapidly computes high frequency seismograms including direct and reflected waves from 1D velocity models.

Kinematic inversion

Slip and rupture velocity distribution are inverted along the fault plane.

Simulations

rupture speed by cells with constant values. The inverse problem is solved
3D Spectral Element Method

We will investigate the wave propagation in the L’Aquila basin with the 3D
Spectral Element Method (SEM) Parallel Code— 3DSPEC (Festa and Vilotte,
2006; Delavaud et al., 2006). SEM is very efficient in solving the complete wa-
vefield, within complex sources, by combining the accuracy of spectral me-
thods and the flexibility in the meshing, typical of finite-element codes. SEM
approximates the solution with piecewise high-order Lagrange polynomials,
localized at the Gauss-Lobatto-Legendre quadrature points. Such a choice leads
to a diagonal mass matrix and an explicit time-stepping scheme. The method

The forward problem is based on the solution of the representation inte- as an optimization problem, using the Neighbourhood algorithm with a

gral in the frequency domain, solved by a finite element approach based L2 norm. The methodology has been applied to a 2008, June 14, Iwate-
on Delaunay’s fault plane triangulation, over which the Green’ tractions Nairiku-Miyagi, Japan, earthquake (M = 7.2), recorded by K-net and
are computed. A different parametrization for slip and rupture velocity is Kik-net stations.

chosen : the slip is described by 2D overlapping Gaussian functions, the
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efficiently accounts for topography, free-surface, complex basin shapes, veloci-
ty contrasts and absorbing boundary conditions, which mostly accounts for
energy to quit the model at external boundaries. Rupture is kinematically impo-
sed as a combination of point-sources opportunely activated when they are rea-
ched by the rupture front.
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Multiphase Ray Theory Method

The computation of synthetic seismograms for each source is based on
the asymptotic ray-theory. The method we developed allows the rapid
generation of an exhaustive number of seismic-phases that are used to
build seismic waveforms having the same complexity of records simu-
lated by complete wave-field techniques.

The method uses a hierarchical order of ray and seismic-phase genera-
tion, taking into account existing constraints for ray paths and a
number of physical constraints (Stabile et al., 2009). The algorithm has
been implemented in the COMRAD code (from the Italian: "COdice
Multifase per il RAy-tracing Dinamico").

Below an example of synthetic seismograms (X and Z component)
computed in a layered velocity model for a station at 30 km epicentral .
distance from an explosive source (4 km depth) is shown. Each seismic
phase can be indentified on waveforms.

We will perform a fast computation of MO0 O30 14100° 149730 14200

synthetic seismograms associated to an
extended fault, considering a complex
source kinematic model for the earthqua-
ke rupture process.

The source parametrization is based on
k-square model (Herrero and Bernard,
1994; Gallovi¢ and BrokeSova, 2004).
The source is discretized by a grid of
NxM point souces and the synthetic sei-
smogram at each receiver, associated to
the extended fault, is the sum of the syn-
thetics computed for each point source.

Geometry source-receiver. The strong motion accelerograms
were used in inversion, and were recorded from the ten station
shows in the map.
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Matching data with synthetics. The waveforms, plotted in blue, are compared with synthetic seismograms (red line) for four selected

% station: AKT023, IWT009, MYGHO02, IWTH20.

point

source rupture front

Figure shows the resultant slip distribution to the inversion, on the NW dipping fault plane, where slips are drawn
in a color scale. The black star denotes the hypocenter. The rupture velocity and moment magnitude are estimated
to be 2.8 km/s and 6.8, respectively. The estimated slip distribution is similar to that inversion of Hikima K., 2008.
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R A Ground-motion prediction equations for low-to-moderate earth(}uakes in the Campania-
0 5 v g . m - . . )
| Lucania region, Southern Apennines, Italy
p=2.2 kg/m’; Vp=5.3 km/s; Vs=3.06 km/s _ . . } . .o
km A key aspect of ground-shaking map calculation is represented by ground motion prediction  Where M is magnitude, R is the hypocentral distance expressed in km, s is a dummy variable which
p=2.2 kgl Vp=6.0 kmis; Vs=3.46 km/s NERJIN N equations. In fact, grognd—shaking maps soon after an earthql.laké, are calculated by integrating  assume values -1, 0 or 1 depending on the selected station (Figure 2) and clogY is the standard error.
: - | - | - | - | - = observed data and estimates for the areas not covered by seismic network (Wald et al., 1999;  The coefficients along with the standard error are listed in Table 1.
< » . | onvertito et al. ) n order to the test the retrieved stations” dependent moaels, they have been compared with those
< eI C i 1., 2009 In ord h h ieved stations’ depend dels, they have b pared with th
' B Nowadays’ empirical ground motion models used to compute ground shaking maps primarily =~ proposed by Frisenda et al. (2005) (hereinafter FRIOS5) retrieved by using data relative to small
p=2.2 kg/m’; Vp=6.28 km/s; Vs=3.63 km/s . ] refer to strong ground motion due to large earthquakes (M > 5.5). However, those models earthquakes recorded in Northern Italy respectively and the ones proposed by Massa et al. (2007)
2 cannot be properly used to predict ground motion due to small magnitude earthquakes which,  (hereinafter MAS07) for Central-Northern Italy. _
due to their frequency of occurrence, and highest frequency content can affect non-structural ~ Figures 3 shows the results of the comparison for Pga and Pgv respectively. The GMPEs have been
0 7 component of both industrial facilities and civil structures. PlOttEdtzy ? Stsiummf% ﬂ;efmiﬁn Vah(;elof te ?Ch rga}gﬁmde Clasts " refere(ril N magtn 1tu§e ezr}d Eﬁ’ Cl\(jlrilsd(;
— Ground-motion prediction equations (GMPEs) for peak-ground acceleration and peak-ground & PO SHMON SHECL 10T T MOCET TELIIeVET IN THe PIesent paper anc a no site-cticct n the
. ! . ! . ! . ! , ! . C . . ... model and FRI05 model. The analysis of the left panels of Figures 3 shows that the three models are
0=2.2 kg/m®; Vp=6.54 km/s; Vs=3.78 kmis 12 12 16 18 50 velocity are presented in this study. The dataset used is relative to the seismicity recorded by the . : : . . . .
\ . . . . characterized by different attenuation with distance. Those differences can be attributed both to a diffe-
» Time (s) Irpinia Seismic Netwrok (ISNet) in the last years (Iannaccone et al., 2009).

rence in tectonics of the region where data have been collected and to the limited number of data at
small distances. Concerning Pgv, the differences are less marked and the three models are much more
similar.

Figure 1: Recent seismicity
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tion and performs a grid search over a set of trial source positions and time
shifts in order to i1dentify the optimal centroid position, time and moment
tensor through a minimization of the residual errors that is equivalent to
maximize the correlation between real and synthetic seismograms.

fault are inverted at the same time using a fast and optimized grid search
combined with a simulated annealing algorithm.
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We find a centroid depth of about 5 km and a prevalently normal fault
plane solution with a dominant directivity effect toward SE.
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