Continuous waveform data stream analysis: Detection and location of the L'Aquila earthquake sequence

Michelini A.¹, Maggi, A.²

¹Istituto Nazionale di Geofisica e Vulcanologia, via di vigna murata, 605, 00143 Roma, Italy. (alberto.michelini@ingv.it)
²École et Observatoire des Sciences de la Terre, Université de Strasbourg, France (alessia@unistra.fr)

Abstract

We present a continuous waveform earthquake location technique which does not rely on wave onset phase picking or on event phase association. The technique adopts and further develops a methodology introduced by Withers et al. (1999) based on the cross-correlation between ”Green's functions” within a predefined distance range, and stream-like, continuously recorded data. At each time step, earthquake occurrence is tested through the sum of the cross-correlation values on a grid of potential location points. In real time processing and in absence of station latencies, the technique, when applied at regional and local scales, can provide locations within 10-30 seconds from origin time depending on the pre-assigned distance of the Green's functions and station coverage. In addition the technique can be used off-line to analyse pre-recorded data. The methodology is applied to data recorded by the permanent Italian National Seismic Network operated by INGV. The resulting epicentral locations are generally found to match closely those determined using manual picks and standard location programs. In addition we detect a number of events that were missed by the standard manual location procedure. The technique shows potential for unattended and rapid seismic source detection/location in seismic monitoring centers.

Data

The waveform data used in this study were recorded by the stations of the Italian National Seismic Network (international network code IV) and MedNet (MN). Twenty-five permanent stations are situated within a radius of 100 km from the city of L'Aquila (Fig. 5a). We have selected vertical component data (HH2) from 00:00 UTC on April 6, 2009 to 23:59 UTC on April 30, 2009, for a total of 25 days. The data were decimated to 10 Hz after low-pass filtering at 2.5 Hz in order to avoid possible aliasing, then were arranged in 30-minute time-windows, with an overlap of 5 minutes every half hour. Given that most of the stations rely on satellite telemetry, gaps are present in some of the data. In order to avoid data-gaps, we have only considered stations that recorded and transmitted successfully all the data samples within a given data window. Therefore, the station coverage we use varies between different time-windows. For the 25 days covered by this study, the median of the number of stations used for a single time-window is 22, and 99% of the windows contain complete data recorded by more than 10 stations.

Analysis

The methodology, originally proposed by Withers et al. (1999), has been coded and implemented introducing some new waveform pre-processing schemes such as linearity, envelope and kurtosis. The results show that a total of 5590 seismic events were detected by WaveLoc in the 25-day time period from April 6 to April 30, 2009. 2327 earthquakes could be associated to events listed in the ISIDE catalogue (http://iside.mi.ingv.it) - the latter resulting from manual picks performed by analysts and improved station geometry. Depending on the magnitude range, we have shown that more than 90% of the events listed ISIDE have been correctly identified and located in the range 2.5 ≤ M ≤ 3.0 and nearly 100% for larger magnitudes. To this regard, careful manual revision has shown that the missed events belong either to the first half-hour after the main shock when the overall noise level is very high owing to the multiple event scattering or to inconsistencies in the ISDE OTS. However, the large majority of the ”missed” events that are catalogued in ISDE feature local magnitudes less than 1.5. In contrast, we have found that WaveLoc detected many events not reported in ISIDE. Although many of these events are probably false, we have found nevertheless several tens of events that feature large correlation values which have been probably missed by the INGV monitoring system. WaveLoc can be adopted both on real-time data streams for quick identification and location of seismic events, and off-line for the analysis of large volumes of data without human intervention. Although in its present stage of development the technique cannot substitute more standard algorithms based on manual picking and phase association, it can be found nevertheless effective for rapid determination of earthquake in seismic monitoring centers and for the off-line analysis of large volumes of waveform data.

Acknowledgments

We would like to thank the CMT Italian Data Group for providing the data.

Bibliography


Figure 1. The cartoon, shows a simplified acquisition geometry, consisting of three stations (S1, S2 and S3), the true seismic source location (G), and two potential seismic source locations (G1 and G2). The three stations relay on satellite telemetry and are connected to a central computer via analogical link. In this example, the Gs are simply line-casts centered at the appropriate P- and S-wave arrival times. We see that when the source G2 is chosen, the data are not aligned correctly with the Gs, with the exception of the S-wave recorded at S2 aligning with the theoretical P- and S-wave arrival time. Conversely, when the source G1 is chosen, the data are aligned correctly with the Gs. Therefore, the WaveLoc algorithm will prefer G1 over G2.

Figure 2. The cartoon shows through time the emergence of high levels of correlation for an hypothetical earthquake occurring near the “false stations”. At time T1, the three stations have detected the first P-waves. The correlation level circles reduce their radius progressively as time proceeds (T1-10). The optimal location is obtained when all the circles overlap and the level of maximum correlation (correlation value > 0.5) is detected by the algorithm. Therefore, this approach replicates what Richter (1958) describes as the strip method for determining earthquake location.

Figure 3. WaveLoc location of the L'Aquila main shock

Figure 4. Example of 35 minutes of continuous waveform processing. The waveforms are preprocessed using kurtosis in order to enhance the first arrival times. The result of the algorithm is a series of circles whose centres correspond to the OTS of the earthquake.

Figure 5. L'Aquila sequence plan view maps. Stations and grid configuration (a); Events in ISIDE but unassociated with WaveLoc (b); Successful results. WaveLoc events associated to ISIDE (c); Events in ISIDE but unassociated with WaveLoc (d); Histogram of WaveLoc events associated to ISIDE vs correlation value (red) and unassociated (white) (e); Histograms of WaveLoc events associated to ISIDE vs correlation value (red) and unassociated (white) (f).

Figure 6. L'Aquila sequence statistics for events detected by WaveLoc and events associated to ISIDE vs correlation value, magnitude and origin time accuracy vs Ml with the GFs.

Figure 7. Examples of missed events for the L'Aquila sequence. Case of WaveLoc missed event due to large misalignment (a); Event missed by WaveLoc because of correlation peak detection failure (b); Event missing in ISIDE but detected by WaveLoc (c) and (d).

Figure 8. Distance vs correlation value, magnitude and origin time accuracy vs Ml with the GFs.